第九十二章 微积分的故事!

类别:历史军事 作者:仲渊2字数:2068更新时间:24/08/17 11:31:35
    翌日。

    清晨时分,旭日东升,一抹朝阳落在清华园。

    西院第28号房。

    书房内。

    窗户染了一层白霜,一缕缕阳光透过窗户照进无奈,屋内静谧无声,一个木制立式黑板搬进了书房。

    “要学微积分,首先你要搞懂微积分是什么,不能知其然,不知其所以然。”华罗庚立于黑板旁边,写下了六个字。

    微积分是什么。

    “我们先从最基础的求面积讲起,在古希腊时期,阿基米德那个时代人,处于初步发展阶段的几何,数学家们遇到一个棘手且严峻的问题,那就是求面积,三角形和正方形这些图形有面积公式,所以求解很简单,但问题在于,那些不规则图形的面积该怎么求?”

    “例如我现在画的这条s型曲线,这条曲线围成的面积需要求解,但没有公式,这个时候,如何求解一条曲线围成的面积,就成为了当时数学家们研究的问题。”

    “阿基米德找到了办法,余华,你知道是什么办法吗?”

    华罗庚目光看向余华。

    “穷竭法,用熟悉的图形去无限逼近曲线围成图形的面积。”余华回答道。

    “对,穷竭法,提出者安提芬,改进者欧多克斯,完善者阿基米德,穷竭法思想就是用无限个熟悉图形去求一条曲线围成图形的面积,在数学史上,穷竭法被视为微积分的前身,且严谨性无可挑剔。”

    华罗庚右手握着粉笔,画出穷竭法的求解过程,用一个个三角形去填充s型曲线所围成的面积,最终求出面积大小。

    整个过程极为繁琐,但无比严谨。

    华罗庚求解完成,随即用板刷擦去公式和图形,又重新写下一个新的概念,通过矩形求面积:

    “穷竭法沿用到了十七世纪,这一千多年历史之中,有我国的割圆术求面积,但计算过于复杂,并不适用,穷竭法自身局限性也逐渐明显,对于不同曲线围成的面积需要使用不同的图形去逼近,而不同图形的证明技巧并不一样,极为繁琐,这个时期数学界出现‘用矩形来逼近原图形’,思想与穷竭法一致,且更加简单,但矩形求解存在一个问题,那就是失去了严谨性,这是一个非常严重的情况。”

    严谨是数学的灵魂。

    失去简单性,数学失去很多愚笨者。

    失去严谨,数学将会失去一切。

    如果一个定理,一个公式,一个数学常数失去了严谨性,那意味着整个数学大厦的崩塌。

    余华全神贯注聆听,关于华罗庚讲解的重点,尽数记入脑海之中,理解程度非常迅速。

    “牛顿和莱布尼茨对于矩形求解存在的问题非常重视,经过这两位数学家的不懈研究,牛顿和莱布尼茨意外发现了一个关键性东西,也就是微积分最基本和最重要的核心思想,那就是微分与积分之间的互逆运算,用数学公式表达为微积分基本定理。”

    华罗庚面容严肃,在黑板上写下了微积分基本定理:“而在此前,微分和积分,还是两个单独学科,微分求导数,积分求面积,互不相干,在牛顿和莱布尼茨的作用下,微积分完整体系建立。”

    微分与积分之间的互逆运算。

    这是微积分的核心,至此,人类文明发展史上极为重要的微积分诞生,微积分基本定理又被称为牛顿——莱布尼茨公式。

    真是天才……

    余华聆听了微积分诞生的历史进程,心中微微感叹,将两个单独的学科联系在一起,并且敏锐发现微分和积分之间的互逆运算,不愧是历史上两位最顶尖的大牛。

    互逆运算是什么概念?

    简单而言,那就是求面积的问题,可以转变为求导数,求导数的问题转变为求面积,互相变换。

    如果积分之路走不通,那就从低维度研究转变为高维度研究,用微分解决问题。

    如果微分之路走不通,那就从高维度研究转变为低维度研究,用积分解决问题。

    此外,还可逆向积分求面积。

    若你要问它的意义在哪里?

    意义非常重要,在于极大程度上缩减了繁琐的计算过程,简化计算难度,极大提升数学各分支的发展效率。

    微积分能求的东西实在是太多了,例如微分导数的极值。

    极值非常重要,大炮发射的炮弹飞行极限距离,一船货物利润数据,从某地出发到某地之间的那条路线距离最近等等。

    这是科学研究最重要的工具,亦是由人类亲自创造的数学武器。

    “当然,这个时候的微积分体系还不算完美,无穷小量问题使得微积分的基础并不稳固,无穷小量的问题在于通过动态方式来定义极限,一个量在逼近0的过程中,有无数个实数,这样是行不通的,由此引发第二次数学危机,后来数学家柯西和魏尔斯特拉斯重新定义了极限,至此,微积分的基础终于稳固,后来由法国数学家勒贝格研究的勒贝格积分,为微积分收官。”

    华罗庚缓缓讲述关于微积分和无穷小量之间的关系,转而在黑板上写出一串公式,这是勒贝格积分:

    “我在英国剑桥大学留学期间,曾经有幸去了一趟法国,见到勒贝格先生,收益很大,不过,关于微积分在无穷小的领域,我认为还有很大研究价值,日后你可以尝试一下这个领域,微积分既是数学研究的基础,更是科学研究的工具,明白吗?”

    “明白。”余华听闻,点了点头,记下华罗庚送给他的一个数学研究方向。

    华罗庚点头,正色道:“在知道微积分是什么之后,我们学习起来就更加容易,接下来讲函数、导数与极限,第一本书你看了多少?”

    “看完三分之一部分,函数和导数都懂。”余华回应道,昨晚学习时间不长,他只看了《导数与极限》的三分之一。

    “好,那就从极限开始讲起。”

    华罗庚听闻,眼中透出赞赏之色,顿了顿,细细讲解:“微积分的极限定义为……”